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FRACTURE OF MATERI.ALS UNDER COMPRESSION ALONG A PERIODIC SYSTEM 
OF CRACKS UNDER PLANE STRAIN CONDITIONS* 

A.N. GUZ and V.M. NAZABENKO 

Elastic deformations in materials are considered within the framework of 
a three-dimensional linearized stability theory. On the basis of a 
fracture criterion proposed earlier /l, 2/ critical values are specified 
for the compression strain and stress under plane strain corresponding 
to the beginning of material fracture under compression along a periodic 
system of cracks. 

1. We consider an infinite series of cracks 

1% = (2hn), 151 I<& --oo<Q.< +m}, n = 0, t-1, 22, . . . 

(51 are Lagrange coordinates that agree with Cartesian coordinates in the unstrained state). 
Because of compression in the direction of the q axis (parallel to the planes of the cracks), 
a homogeneous subcritical state occurs in the material /2/ 

oiio=const, c8?"=o, U1l#O, cmO#O (1.1) 

u p= 8,, (hi - 1) I,, hi = const, hs= 1 (i = 1,2, 3) 

(hi are elongations along the axes, a, < 1, &I is the Kronecker delta, and a0 is the 
symmetric stress tensor). The perturbation of the displacement vector n and the non-symmetric 
Kirchhoff stress tensor t are used in formulating the linearized problem. 

The crack edges are stress-free. The boundary conditions for the linearized problem are 
written in the form (the crack edges are marked by the plus and minus subscripts) 

t,, = 0, t,, = 0 (53 = (2hn)*, ] 51 I < a, n = 0, &i, f2, . . .) (1.2) 

In connection with the periodicity of the geometric and force diagrams of the problem, 
it is sufficient to examine just the layer Ix,I<h. Because of the symmetry of the con- 
figuration about the plane x*=0, we represent the stress and displacement fields in the 
form of sums of a symmetric part (symmetric buckling mode) and an antisymmetric (bending 
buckling mode) part relative to this plane, and because of the linearity of the problem we 
will investigate them separately. 

XI < h as follows: 
Consequently,the problem is reformulated for the layer O< 

u, = 0 (58 = 0, I 51 I > a), ha = 0 (“a = 0, I 51 I < a) 
tay = 0 ("2 = 0, 1x1 I > O), u, = 0, t, = 0 (xz = h, I xl I > 0) 

(1.3) 

where a = 2, y = 1 for the symmetric buckling mode, and a = 1, y = 2 for the bending mode. 

2. We will carry out the investigation in general form for the theory of large, and two 
versions of the theory of small, subcritical strains, compressible and incompressible bodies 
with an arbitrary kind of elastic potential for the cases of equal and uneaual roots of the 
characteristic equation (the terminology of /Z/J. 

We select the general solutions of the equations of the linearized theory for the sub- 
critical state (1.1) in the following form /Z-4/. 

For equal roots (n, = nJ 

(2.1) 
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Here the quantities C44,ni,mi,li,di belong to the plane problem in contrast to those 
utilized earlier /2, 3/ for the spatial problems. 

The potentials F,m,@ satisfy the Laplace equation in the variables x11 21. The quan- 
tities n,, mi, li are determined for compressible bodies /2, 4/ by the equalities 

n1 = (022 
-1 

22%112%11 %21 -1 ‘1. 
1 (2.2) 

ml = (~llllnl - 6h2) (h2 + ~1212)-1 

m2 = (all22 + ~1212 - 2~~~) (m1122 + ~1212)-1 

4 = (-nlwz211 + m1h2) nl-’ (~2112~z121-1 + ml)%212-1 

4 = [--n16h1 + (ml + m2 - 1) ~22221~1-1 G%,12~2121-1 + 

m2 - I)-’ wlz12 
-1 

F’or incompressible bodies 

n1 = 922qlll 
-1 

h11Z~1221-1)r’s, ml = mh%7 m2 = 1 

4 = bw2izz + n, (qll-‘q 22 x 1111 - %212 - 2% 1 1122 - 

4~~%2~2~21 n,-’ (x2112x21al-1 + mI)-1x1212-1 
h = [m9h2 + nl (911-1wh111 - xlzla - 2x1,,,) - 

3q~~-‘h~2&;’ (~x,,~,x~,,~-’ + m, - I)-’ xlzl;l 

(2.3) 

with the component of the tensor o in (2.1) replaced by corresponding components of the tensor 

x. 

For unequal roots (n,# nz) 

(2.4) 

The potentials 'pi satisfy the Laplace equation in the variables x1, zi, i = 1, 2. 

The quantities nl, mi,li are determined for compressible bodies /2, 4/ by the equalities 

n1.2 = c f (~2 - ~,,,,~,,,,~,,,;~~,,,;~)"~ (2.5) 

2cw llll%221 = %21%111 + ~1111%222 - (%,a + q2PJa 

ml = (nio ii11 - %d (%2* + %~I&‘P li = (%%222 - 

wd (%dG21 + md-‘ni-*4;1,,, i = 1, 2 

For incompressible bodies 

(2.6) 

with the components of the tensor 0 in (2.4) replaced by the components of the tensor X. 

The determination of the tensors o for compressible bodies and x (as well as the 

quantities qij) for incompressible bodies is discussed in detail in /2/, appropriate simplifi- 

cations are introduced in the procedure for their determination here when examining the two 

versions of the theory of small subcritical strains. 

3. Taking into account the symmetry of the displacement field about the 5~ axis, we 

represent the potential in the representation of the general solutions (2.1) and (2.4) in the 
form of Fourier integral cosine expansions in the coordinate X 1 andconsiderthe values Xl> 0. 

For equal roots 

cp(rl,zl)= - 5 [&(h)sh h(hl- z,)+ &(h)chh(hl- 41 (hsh%)-‘cos hadh 
” 

(3.1) 
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F (a a)= 5 [AI (a) ch h (h x - ZI) $ Az (I) sh A (kz - zl)](sh &)-’ cos as1 dh. 
” 

which corresponds to evenness of the displacementz& in r1 and unevenness of 
For unequal roots 

m 
P 

The boundary conditions given in the whole r a = const plane (the last three 
in (1.3)) afford the possibility of preserving just one out of the four unknown 
Ai(h),B,(h) (i == 1, 2) in the integral expansions (3.1) and (3.2). The remaining 
conditions enable the problem to be reduced to systems of two pairwise integral 
the symmetric and bending buckling modes, respectively. 

The bending buckling mode. Taking (2.1) and (2.4) into account, the first 
conditions in (1.3) follow from the relationships: 

For equal roots 

v = 0 (22 = 0, a<xr< ce) 

(c& - 4) F -Q-D = 0 (zr = 0, 0 < x1 < a) 

For unequal roots 

(3.2) 

conditions 
functions 
two boundary 
equations for 

two boundary 

(3.3) 

(3.4) 

on the basis of (3.3) and (3.4) we obtain systems of dual integral equations in the form 

3 hA(iL)[l-g(h)jcoshr,dh=O (O,<s<a) 
(3.5) 

!i A(h)cosacr,dh=O (cz<~~<W) 
0 

Here for the equal roots 

A @)=A-'A@), g(h)= - /@1)-t- Pl/kshaPr (3.6) 

For unequal roots 

A (9 = J.-r& (A)> g(k) = k-' lkf (pl) -kJ (&I 

k, = Eln;"*, k, = E,n;"a, k = k, - k, 

(3.7) 

The symmetric buckling mode. On the basis of the first two conditions in (1.3) we obtain 
a system of dual integral Eqs.(3.5), where in the case of equal roots 

A (A) = A, (V, g (V = -f (1.4 - pd(k sh2 ~1) (3.3) 

For unequal roots 

A (V = -4, (G g (h) = k-' W (~2) - W (PAI (3.9) 

4. We will seek the solution of system (3.5) in the form 

A(h)=h-a~w(t)(cosht-cosha)dt 
0 

where o(t) is an unknown function. It can be shown, by taking 
discontinuous integral /5/ 

(4.1) 

account of the value of the 
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and using integration by parts, that the second equation in (3.5) is satisfied. The remaining 
dual equation when taking account of the value of the integral /5/ 

enables an integral equation to be obtained with a logarithmic singularity 

a 

I s dt - o(t) K @I, t) dt = 0 

0 

where g(h)is determined on the basis of (3.6)-(3-g) 
Using the unknown integrals /5/, the properties of the Gamma function and its logarithmic 

derivative /6/, we obtain the integrals needed later to write the kernel of (4.3) in explicit 
form 

(4.4) 

m 

s sxp(-qgl)sinh+sinhl hshch 
&{Relnl'( n-i-ct;:(t-I))) 

0 

(0 (5)) = f (4 - f (-4) 

Reducing relationships (4.2) and (4.3) to dimensionless form and taking account of (4.41, 
(3.6)-(3.9), we obtain the following eigenvalue problem in the reduction parameter h, (see 
(1.1)): 

Here for equal roots 

R (5) = (-- l)a & cth -$--2RelnI?(l+ik) (*.fi) 

For unequal roots 

R(5) = -$ [ kaRelnr l+i+ -IcklRelnI' 
a 1 ( 

l+i-$- 
Y !I 

(4.5) 

(4.7) 

where fii = +$, j = 1, 2; fl = ha-'; e = 2, y =I I for the symmetric buckling mode, and a = 1, y= 
2 for the bending mode. 

The kernel M(g,?j) of the integral Eq.(4.5) obtained is continuous everywhere,as follows 
from (4.6) and (4.71, except at the point h,* corresponding to the surface instability of the 
half-space and defined by the equation k=O. From reasoning of a physical nature the 
critical values of iL, in the problem under consideration should be greater than the critical 
values of h, for a plane with a crack that equal h,* /2/, i.e., they should be sought in the 
domain h,* <A,< 1,where the function M(g,q) is continuous. 

5. It is convenient to carry out a numerical investigation of the eigenvalue problems 
(4.5)-(4.7) obtained for the parameter h, by the Bubnov-Galerkin method. The numerical 
integration is performed by Gauss quadrature formulas and quadrature formulasfortheintegration 
of functions with a logarithmic singularity /7/. The function InI' in the kernel M (E. rl) 
is calculated effectively by using asymptotic expansions /6/ or rational approximations /B/ 
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with recursion relations. The system of power functions i,z,z*,... was selected as the co- 
ordinate system in the examples presented below. 

Examples. I*. A material with a Bartenev-Khazanovich potential (an incompressible body, 
equal roots). in the case of the subcritical state (1.1) we have forthepotential under 
consideration (p is a material constant) 

The dependence of the relative critical reduction E%= (l-&f on the dimensionless half- 
distance between the cracks $= hh' for the bending buckling mode is represented by the solid 
line in the figure (for the symmetric mode the critical values of a1 turned out to be greater 
than the values EL*=: (1 -a?), corresponding to the surface instability of the half-plane). The 
nature of the convergence as a function of the number N of coordinate functions utilized is 
illustrated for fi='ls by the following data: P,= 0.008 for N- 1, E,= 0.010 for N= 2 and 
et= 0.012 for N= 3,4,5 (the critical values e 1 are presented to the third decimal place). 

Z". A material with a Treloar potential (an incompressible body, unequal roots). We have 
for the subcritical state (1.1) (C,, is a material constant) 

xu11 = Z&i (VV + i), x1122 = 0, %212 = ZC,&;'~* (5.2) 
X,,,, = X2,,2 = ZC~*, x22ps = 4c,,; Cad = zcl,al-Ia, 
n, = i, n, = h,=a,-2, mt = AL-la,, m2 = ~la;l 

1, = za,A, (h,e _t h,e)-1, I, = 2-lh;aa,(i + alzhz-q 

fil = 6, pp = pa;%, kl = 2ats (h,a +- ap, k, = 2-~a,-~ap (1 + pa,-y, 

k = k, - k,, a,azas = i, a, = i, a,* = 0.544 

For the material mentioned, the dependence of the relative critical reduction E, on the 
dimensionless half-distance between cracks p is represented by the dashed line in the figure 
(the results are presented for the bending mode). 

Discussion of the resufts. As the results of the numerical analysis show, the method 
used fortheinvestigation is quite effective (two-three coordinate functions are adequate for 
calculating the critical value of the relative reduction to the third decimalplace e,= (i--&f. 
For small values of the dimensionless half-distance between cracks @=ha-' the mutual influ- 
ence of the cracks results in the critical values of e, being considerably less (by two orders 
of magnitude) than the values corresponding to one crack in an infinite material and equal 
cl* /2/ (see the figure). 

AS B-m the critical values of the relative reduction tend 
asymptotically to the value El = El* both for the bending and the 

S, 
. 

24 
_-- " 

LILT4 
s, 

0.2 

~ 

symmetric buckling modes (as Bdm the cracks do not interact, 
i.e., this is the case of an isolated crack in an infinite material). 

In conformity with the fracture criterion assumed thecritical 
values obtained for the relative reduction 6% characterize the 
beginning of the fracture of a material weakened by a periodic 

/ 
system of parallel cracks under compression along the latter. In 

a02 
the case under consideration when the bending buckling mode is 
realized, the critical values of Q obtained will here obviously 

oy' 
also characterize the subsequent total fracture of the material 

qos 0.15 0.25 
in the whole domain occupied by the cracks since a phenomenon 
occurs in this case that is analogous to the appearance of a 
plastic hinge over the whole material thickness in the beam 

0 2 4 bending case. 
A completely different situation is obtained in the case of 

near-surface cracks /3/, when local buckling results just in local 
fracture of the interlayer between the crack and the free surface and the question of fracture 
of the whole material requires further study. An analogous phenomenon also holds for a finite 
number of cracks when local buckling also results in just local fracture; the questions of 
local fracture as it applies to the case of two cracks are investigated in 191. 

Note that the method of investigation developed above for elastic materials weakened by 
a periodic system of cracks can also be extended to more complex models of materials /2,10,11/. 
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FRACTURE CRITERIA FOR MATERIALS WITH DEFECTS* 

L.N. GERMANOVICH and G.P. CHEREPANOV 

Classical theories of the strength of materials start from concepts of 

the existence and uniqueness of fracture surfaces in the space of 

indpendent loading parameters: on approaching a certain point of this 

surface from within along any arbitrary loading path, the instant of 
fracture is fixed by the very same combination of loading parameters. 

Such are all the strength criteria appied in the strength of materials 

(in stress space), for instance, Galileo, Poncelet, Coulomb, Tresca, 
Saint-Venant, Cloore, Mises, etc. /l-16/. This concept turned out to be 

valid even from the viewpoint of fracture mechanics in the case of active 

loading paths /17/. 

Analysis of these concept in the case of two (and more) independent loading parameters 

and for any loading paths is of interest fromtheviewpoint of modern fracture mechanics 
according to which the fracture of real materials is explained by the development of cracks 
in them from certain initial defects. The most widespread kinds of initial defects here are 

obviously pores and cracks. Representative of crack and pore materials are concrete, ceramics, 

composites, mountain rocks and other geomaterials for which the representation of a fracture 

surface is used extensively at present to describe their strength. 
We consider below two problems of fracture mechanics with two independent loading 
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